

Jennifer Wei^{1,2}, Xiaozhen Xiong^{1,2}, Chris Barnet¹, Laura Pan³, Eric Maddy^{1,2}, Murty Divakarla^{1,4}, Jasna Pittman³

- ¹ NOAA/NESDIS/STAR
- ² Perot System Government Services
- 3 NCAR/ACD
- ⁴ I. M. Systems Group

Highlights

Part I:

Wei, J. C, L. L. Pan, E. Maddy, J. V. Pittman, M. Divakarla, X. Xiong, and C. Barnet, Ozone Profile Retrieval from Advanced Infrared Sounder: Experiments with Tropopause Based Climatology and Optimal Estimation Approach, submitted to Journal of Atmospheric and Oceanic Technology, 2009.

Part II:

Xiong, X., C. Barnet, J. Wei, and E. Maddy, Information-Based Mid-Upper Tropospheric Methane Derived from Atmospheric Infrared Sounder (AIRS) and Its Validation, Atmospheric Chemistry and Physics Discussions, Volume 9, Issue 4, 2009, pp.16331-16360

Characteristics of Tropopause

3

Part (I)

Improvement on Ozone Profile Retrieval in the UTLS:

Experiments with Tropopause Based Climatology and Optimal Estimation Approach

Jennifer Wei (Jennifer.Wei@noaa.gov)

based

Ozone Mean/Variation in January Using Different Vertical Coordinates

•SLB:
Sea-level based
•TB:
Tropopause

NOAA/NESDIS/PSGS Wei et al

Retrieval Experiments

Experiment Setup:

- •Case 1: AST algorithm with SLB ozone climatology
- •Case 2: AST algorithm with TB ozone climatology
- •Case 3: OE algorithm with SLB ozone climatology
- •Case 4: OE algorithm with TB ozone climatology

Validation Data

- Ozonesonde dataset (sanity check)
- •Simulated ECMWF Focus Day (global): 2007.10.19
- START08 Campaign

Example: Ozone Profile Retrieval

NOAA/NESDIS/PSGS Wei et al A Priori in SLB
AST OZ_SLB RET
OE OZ_SLB RET

A Priori in TB
AST OZ_TB RET
OE OZ_TB RET

Exp. Using START08
Flight 04: 2008.04.28
"Stratospheric
Intrusion"

Horizontal View at 250 hPa

Ozone field (colored)
2, 4 PV (orange contour)

NOAA/NESDIS/PSGS Wei et al

Exp. Using ECMWF 2007.10.19

First Guess: Gray Shaded Ret.: Red line

NOAA/NESDIS/PS Wei et al

Ensemble Statistics Using ECMWF 2007.10.19

First Guess: Gray line

Ret.: Red line

All lines represent 25% (dashed line), median (solid line), and 75% (dashed line)

NOAA/NESDIS/PSGS Wei et al

Ensemble Statistics Using START08 GV 03 NOAA

Summary (I)

- Tropopause based ozone climatology in the retrievals captures the strong gradient in ozone retrievals near the tropopause region.
- The OE algorithm with tropopause-based ozone climatology has the best performance in capturing UTLS ozone gradients
- Implication of tropopause based ozone climatology can further improve ozone retrievals in the UTLS region for infrared hyperspectral instruments, such as IASI/CrIS.

Part (II)

Mid-Upper Tropospheric Methane: Information-Based Analysis and Validation

On behalf of Xiaozhen Xiong (Xiaozhen.Xiong@noaa.gov)

Tropopause vs. Retrieval Max. Sensitive Level

AIRS CH_4 DOF ≈ 1

AIRS Effective Layers vs Model Simulation

Comparisons with Aircraft Measurements ESRL, INTEX-A, INTEX-B

Δ: Aircraft ◊: Aircraft w/AK

Wei et al

Summary (II)

- Tropopause height correlates well with the max. sensitive layers of methane in the midto-high latitudes
- This method is applicable to the aircraft measurements: good agreement in mid-toupper tropospheric methane and in seasonal variations

